Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
2.
Proc Natl Acad Sci U S A ; 119(23): e2118836119, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1890407

ABSTRACT

Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device, coupled with label-free Raman spectroscopy, holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning (ML) approach applied to recognize the virus based on its Raman spectrum, which is used as a fingerprint. We present such an ML approach for analyzing Raman spectra of human and avian viruses. A convolutional neural network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks. In particular, it achieves 99% accuracy for classifying influenza virus type A versus type B, 96% accuracy for classifying four subtypes of influenza A, 95% accuracy for differentiating enveloped and nonenveloped viruses, and 99% accuracy for differentiating avian coronavirus (infectious bronchitis virus [IBV]) from other avian viruses. Furthermore, interpretation of neural net responses in the trained CNN model using a full-gradient algorithm highlights Raman spectral ranges that are most important to virus identification. By correlating ML-selected salient Raman ranges with the signature ranges of known biomolecules and chemical functional groups­for example, amide, amino acid, and carboxylic acid­we verify that our ML model effectively recognizes the Raman signatures of proteins, lipids, and other vital functional groups present in different viruses and uses a weighted combination of these signatures to identify viruses.


Subject(s)
Machine Learning , Neural Networks, Computer , Viruses , Disease Outbreaks , Pandemics , Serogroup , Viruses/classification
4.
Viruses ; 14(2)2022 02 01.
Article in English | MEDLINE | ID: covidwho-1715768

ABSTRACT

Viral diseases consistently pose a substantial economic and public health burden worldwide [...].


Subject(s)
Antiviral Agents/pharmacology , Virus Diseases/drug therapy , Humans , Virus Diseases/virology , Virus Physiological Phenomena , Viruses/classification , Viruses/drug effects , Viruses/genetics
5.
Viruses ; 14(2)2022 02 18.
Article in English | MEDLINE | ID: covidwho-1707748

ABSTRACT

In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Viruses/drug effects , Animals , Disease Outbreaks/prevention & control , Ebolavirus/drug effects , Humans , SARS-CoV-2/drug effects , Virus Diseases/drug therapy , Virus Replication/drug effects , Viruses/classification , Viruses/pathogenicity
6.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1705332

ABSTRACT

Coinfection rates with other pathogens in coronavirus disease 2019 (COVID-19) varied during the pandemic. We assessed the latest prevalence of coinfection with viruses, bacteria, and fungi in COVID-19 patients for more than one year and its impact on mortality. A total of 436 samples were collected between August 2020 and October 2021. Multiplex real-time PCR, culture, and antimicrobial susceptibility testing were performed to detect pathogens. The coinfection rate of respiratory viruses in COVID-19 patients was 1.4%. Meanwhile, the rates of bacteria and fungi were 52.6% and 10.5% in hospitalized COVID-19 patients, respectively. Respiratory syncytial virus, rhinovirus, Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were the most commonly detected pathogens. Ninety percent of isolated A. baumannii was non-susceptible to carbapenem. Based on a multivariate analysis, coinfection (odds ratio [OR] = 6.095), older age (OR = 1.089), and elevated lactate dehydrogenase (OR = 1.006) were risk factors for mortality as a critical outcome. In particular, coinfection with bacteria (OR = 11.250), resistant pathogens (OR = 11.667), and infection with multiple pathogens (OR = 10.667) were significantly related to death. Screening and monitoring of coinfection in COVID-19 patients, especially for hospitalized patients during the pandemic, are beneficial for better management and survival.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/epidemiology , Coinfection/microbiology , Coinfection/virology , Mycoses/epidemiology , Virus Diseases/epidemiology , Adolescent , Adult , Bacteria/classification , Bacteria/pathogenicity , COVID-19/microbiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/mortality , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/virology , Female , Fungi/classification , Fungi/pathogenicity , Humans , Male , Middle Aged , Prevalence , Republic of Korea/epidemiology , Viruses/classification , Viruses/pathogenicity , Young Adult
7.
Nucleic Acids Res ; 50(D1): D387-D390, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1705079

ABSTRACT

The Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/) stores raw sequencing data and alignment information to enhance reproducibility and facilitate new discoveries through data analysis. Here we note changes in storage designed to increase access and highlight analyses that augment metadata with taxonomic insight to help users select data. In addition, we present three unanticipated applications of taxonomic analysis.


Subject(s)
Bacteria/genetics , Databases, Genetic , Metadata/statistics & numerical data , Software , Viruses/genetics , Bacteria/classification , Base Sequence , High-Throughput Nucleotide Sequencing , Internet , Phylogeny , Reproducibility of Results , SARS-CoV-2/genetics , Sequence Analysis, RNA , Viruses/classification
9.
J Med Virol ; 93(8): 4748-4755, 2021 08.
Article in English | MEDLINE | ID: covidwho-1610624

ABSTRACT

Respiratory infections are one of the most frequent reasons for medical consultations in children. In low resource settings such as in Lao People's Democratic Republic, knowledge gaps and the dearth of laboratory capacity to support differential diagnosis may contribute to antibiotic overuse. We studied the etiology, temporal trends, and genetic diversity of viral respiratory infections in children to provide evidence for prevention and treatment guidelines. From September 2014 to October 2015, throat swabs and nasopharyngeal aspirates from 445 children under 10 years old with symptoms of acute respiratory infection were collected at the Children Hospital in Vientiane. Rapid antigen tests were performed for influenza A and B and respiratory syncytial virus. Real-time reverse-transcription polymerase chain reactions (RT-PCRs) were performed to detect 16 viruses. Influenza infections were detected with a higher sensitivity using PCR than with the rapid antigen test. By RT-PCR screening, at least one pathogen could be identified for 71.7% of cases. Human rhinoviruses were most frequently detected (29.9%), followed by influenza A and B viruses combined (15.9%). We identify and discuss the seasonality of some of the infections. Altogether these data provide a detailed characterization of respiratory pathogens in Lao children and we provide recommendations for vaccination and further studies.


Subject(s)
Coinfection/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/epidemiology , Viruses/genetics , Acute Disease/epidemiology , Child , Child, Preschool , Coinfection/virology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , Laos/epidemiology , Male , Prevalence , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/virology , Viruses/classification , Viruses/isolation & purification
10.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: covidwho-1662709

ABSTRACT

The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.


Subject(s)
Gastrointestinal Microbiome/genetics , Metagenome , Metagenomics/methods , Virome/genetics , Virus Diseases/drug therapy , Animals , COVID-19/therapy , Humans , Mice , Obesity/complications , SARS-CoV-2/genetics , Virus Diseases/therapy , Viruses/classification , Viruses/genetics
11.
Viruses ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: covidwho-1580419

ABSTRACT

A microarray-based assay to detect IgG and IgM antibodies against betacoronaviruses (SARS-CoV-2, SARS, MERS, OC43, and HKU1), other respiratory viruses and type I interferons (IFN-Is) was developed. This multiplex assay was applied to track antibody cross-reactivity due to previous contact with similar viruses and to identify antibodies against IFN-Is as the markers for severe COVID-19. In total, 278 serum samples from convalescent plasma donors, COVID-19 patients in the intensive care unit (ICU) and patients who recovered from mild/moderate COVID-19, vaccine recipients, prepandemic and pandemic patients with autoimmune endocrine disorders, and a heterogeneous prepandemic cohort including healthy individuals and chronically ill patients were analyzed. The anti-SARS-CoV-2 microarray results agreed well with the ELISA results. Regarding ICU patients, autoantibodies against IFN-Is were detected in 10.5% of samples, and 10.5% of samples were found to simultaneously contain IgM antibodies against more than two different viruses. Cross-reactivity between IgG against the SARS-CoV-2 nucleocapsid and IgG against the OC43 and HKU1 spike proteins was observed, resulting in positive signals for the SARS-CoV-2 nucleocapsid in prepandemic samples from patients with autoimmune endocrine disorders. The presence of IgG against the SARS-CoV-2 nucleocapsid in the absence of IgG against the SARS-CoV-2 spike RBD should be interpreted with caution.


Subject(s)
Antibodies, Viral/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Viruses/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Autoantibodies/blood , Autoantibodies/immunology , COVID-19/immunology , COVID-19 Serological Testing , Cross Reactions , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Protein Array Analysis , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , Viruses/classification
12.
Viruses ; 13(12)2021 11 27.
Article in English | MEDLINE | ID: covidwho-1574265

ABSTRACT

Modulation of the antiviral innate immune response has been proposed as a putative cellular target for the development of novel pan-viral therapeutic strategies. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is especially relevant due to its essential role in the regulation of local and systemic inflammation in response to viral infections, being, therefore, a putative therapeutic target. Here, we review the extraordinary diversity of strategies that viruses have evolved to interfere with JAK-STAT signaling, stressing the relevance of this pathway as a putative antiviral target. Moreover, due to the recent remarkable progress on the development of novel JAK inhibitors (JAKi), the current knowledge on its efficacy against distinct viral infections is also discussed. JAKi have a proven efficacy against a broad spectrum of disorders and exhibit safety profiles comparable to biologics, therefore representing good candidates for drug repurposing strategies, including viral infections.


Subject(s)
Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Virus Diseases/metabolism , Viruses/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Inflammation , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Virus Diseases/drug therapy , Virus Diseases/immunology , Viruses/classification , Viruses/drug effects
13.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572663

ABSTRACT

BACKGROUND: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.


Subject(s)
Antiviral Agents/pharmacology , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Cell Line , Drug Synergism , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Metabolome/drug effects , Organoids , RNA, Viral/biosynthesis , RNA, Viral/drug effects , Signal Transduction/drug effects , Transcriptome/drug effects , Virus Replication/drug effects , Viruses/classification , Viruses/drug effects
14.
J Nanobiotechnology ; 19(1): 348, 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1555350

ABSTRACT

Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.


Subject(s)
Clinical Laboratory Techniques , Virus Diseases/diagnosis , Viruses/isolation & purification , Biosensing Techniques , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Nucleic Acid Amplification Techniques , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Viral Proteins/genetics , Viral Proteins/immunology , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Viruses/immunology
15.
J Trop Pediatr ; 67(6)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1550588

ABSTRACT

OBJECTIVES: The aim of this study was to compare the clinical and laboratory findings in SARS-CoV-2 (COVID-19) with those of other respiratory viruses in critically ill children. METHODS: It is a single center retrospective descriptive study conducted in a 32-bed pediatric intensive care unit (PICU). Our study was performed in Ankara City Hospital, Ankara, Turkey, between 1 March 2020, and 1 March 2021. Demographic and clinical characteristics of the patients were collected and we recorded the antibiotic use, antiviral treatments, respiratory and extracorporeal supports, PICU stay and survival rates. RESULTS: A total of 202 pediatric patients who tested positive for either COVID-19 or for another respiratory virus panel (RVP) were included in the study. Seventy-two patients were COVID-19 positive. The median age of COVID-19 positive patients and RVP positive patients was 97 and 17 months, respectively. Hypoxia was much more common in patients with RVP than in COVID-19 patients. Low oxygen saturation in arterial blood (SaO2), increased oxygen saturation index (OSI) and fraction of inspired oxygen (FiO2) needs were more significant in RVP patients than in COVID-19 patients. Respiratory support therapies, such as high-flow nasal cannula and non-invasive ventilation (NIV), were used more frequently in RVP patients than in COVID-19 patients. CONCLUSION: It is important to distinguish between COVID-19 and RVP cases in order to prioritize intensive care needs in these patients. In addition, non-Covid diseases should not be left aside in the pandemic and appropriate care should be provided to them.


COVID-19 originated in Wuhan, China, at the end of 2019 and has since spread around the world. During the key period of the pandemic from 1 March 2020, to 1 March 2021, the pediatric intensive care unit registered a total of 72 patients testing positive for SARS-CoV-2 and 130 patients positive for RVP on the respiratory virus panel. In this single-center study, we compared the clinical differences and course of the disease in pediatric intensive care patients infected with SARS-CoV-2 with patients diagnosed with respiratory tract viruses during the COVID-19 outbreak. Unlike previous studies, this is the first to compare the clinical manifestations of COVID-19 with other respiratory pathogens requiring intensive care. Respiratory support therapy, such as high-flow nasal cannula (HFNC) and NIV, was prescribed more frequently in RVP patients than in COVID-19 patients. In our study, low oxygen saturation in the arterial blood (SaO2), increased OSI and increased fraction of inspired oxygen (FiO2) requirements were more significant in RVP patients than in COVID-19 patients. In parallel, the need for mechanical ventilation was higher in RVP patients than in COVID-19 patients. Therefore, we believe that RVP patients should be followed more carefully during this pandemic period.


Subject(s)
COVID-19 , Respiratory Tract Diseases/virology , COVID-19/diagnosis , Child , Child, Preschool , Critical Illness , Female , Humans , Infant , Intensive Care Units, Pediatric , Male , Oxygen Saturation , Pandemics , Respiratory Tract Diseases/diagnosis , Retrospective Studies , SARS-CoV-2 , Turkey , Viruses/classification
16.
Viruses ; 13(12)2021 11 29.
Article in English | MEDLINE | ID: covidwho-1542801

ABSTRACT

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations.


Subject(s)
Virology , Animals , Host-Pathogen Interactions , Humans , Pandemics/prevention & control , Prion Diseases/diagnosis , Prion Diseases/prevention & control , Prions/immunology , Prions/isolation & purification , Prions/pathogenicity , Vaccines , Virology/organization & administration , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses/classification , Viruses/immunology , Viruses/isolation & purification , Viruses/pathogenicity
17.
Sci Rep ; 11(1): 20058, 2021 10 08.
Article in English | MEDLINE | ID: covidwho-1459989

ABSTRACT

Respiratory viruses can be detected in 18.3 to 48.9% of critically ill adults with severe respiratory tract infections (RTIs). The present study aims to assess the clinical significance of respiratory viruses in pragmatically selected adults in medical intensive care unit patients and to identify factors associated with viral respiratory viral tract infections (VRTIs). We conducted a prospective study on critically ill adults with suspected RTIs without recognized respiratory pathogens. Viral cultures with monoclonal antibody identification, in-house real-time polymerase chain reaction (PCR) for influenza virus, and FilmArray respiratory panel were used to detect viral pathogens. Multivariable logistic regression was applied to identify factors associated with VRTIs. Sixty-four (40.5%) of the included 158 critically ill adults had respiratory viruses detected in their respiratory specimens. The commonly detected viruses included influenza virus (20), followed by human rhinovirus/enterovirus (11), respiratory syncitial virus (9), human metapneumovirus (9), human parainfluenza viruses (8), human adenovirus (7), and human coronaviruses (2). The FilmArray respiratory panel detected respiratory viruses in 54 (34.6%) patients, but showed negative results for seven of 13 patients with influenza A/H3 infection. In the multivariable logistic regression model, patient characters associated with VRTIs included those aged < 65 years, household contact with individuals with upper RTI, the presence of fever, cough with sputum production, and sore throat. Respiratory viruses were not uncommonly detected in the pragmatically selected adults with critical illness. The application of multiplex PCR testing for respiratory viruses in selected patient population is a practical strategy, and the viral detection rate could be further improved by the patient characters recognized in this study.


Subject(s)
Respiratory Tract Infections/epidemiology , Viruses/pathogenicity , Aged , Critical Illness , Female , Follow-Up Studies , Humans , Intensive Care Units , Male , Middle Aged , Prognosis , Prospective Studies , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Taiwan/epidemiology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
18.
Virol J ; 18(1): 159, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1496199

ABSTRACT

BACKGROUND: The multifaceted non-pharmaceutical interventions (NPIs) taken during the COVID-19 pandemic not only decrease the spreading of the SARS-CoV-2, but have impact on the prevalence of other viruses. This study aimed to explore the prevalence of common respiratory viruses among hospitalized children with lower respiratory tract infections (LRTI) in China during the COVID-19 pandemic. METHODS: Respiratory specimens were obtained from children with LRTI at Children's Hospital of Fudan University for detection of respiratory syncytial virus (RSV), adenovirus (ADV), parainfluenza virus (PIV) 1 to 3, influenza virus A (FluA), influenza virus B (FluB), human metapneumovirus (MPV) and rhinovirus (RV). The data were analyzed and compared between the year of 2020 (COVID-19 pandemic) and 2019 (before COVID-19 pandemic). RESULTS: A total of 7107 patients were enrolled, including 4600 patients in 2019 and 2507 patients in 2020. Compared with 2019, we observed an unprecedented reduction of RSV, ADV, FluA, FluB, and MPV infections in 2020, despite of reopening of schools in June, 2020. However, the RV infection was significantly increased in 2020 and a sharp increase was observed especially after reopening of schools. Besides, the PIV infection showed resurgent characteristic after September of 2020. The mixed infections were significantly less frequent in 2020 compared with the year of 2019. CONCLUSIONS: The NPIs during the COVID-19 pandemic have great impact on the prevalence of common respiratory viruses in China. Meanwhile, we do need to be cautious of a possible resurgence of some respiratory viruses as the COVID-19 restrictions are relaxed.


Subject(s)
COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Age Distribution , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Coinfection/epidemiology , Coinfection/virology , Female , Hospitalization , Hospitals, Pediatric , Humans , Infant , Male , Prevalence , SARS-CoV-2 , Seasons , Viruses/classification , Viruses/isolation & purification
19.
Viruses ; 12(8)2020 08 18.
Article in English | MEDLINE | ID: covidwho-1453290

ABSTRACT

Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus-virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus-virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus-virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.


Subject(s)
Coinfection/virology , Gastroenteritis/virology , Virus Diseases/physiopathology , Viruses/classification , Viruses/pathogenicity , Animals , Asymptomatic Infections , Disease Models, Animal , Feces/virology , Humans , Intestines/virology , Mice , Primates
20.
Infect Dis Clin North Am ; 35(4): 1055-1075, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487740

ABSTRACT

Health care-acquired viral respiratory infections are common and cause increased patient morbidity and mortality. Although the threat of viral respiratory infection has been underscored by the coronavirus disease 2019 (COVID-19) pandemic, respiratory viruses have a significant impact in health care settings even under normal circumstances. Studies report decreased nosocomial transmission when aggressive infection control measures are implemented, with more success noted when using a multicomponent approach. Influenza vaccination of health care personnel furthers decrease rates of transmission; thus, mandatory vaccination is becoming more common. This article discusses the epidemiology, transmission, and control of health care-associated respiratory viral infections.


Subject(s)
Cross Infection/prevention & control , Cross Infection/virology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Cross Infection/epidemiology , Cross Infection/transmission , Guideline Adherence , Health Personnel/standards , Humans , Infection Control/standards , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/transmission , SARS-CoV-2/pathogenicity , Vaccination , Viruses/classification , Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL